Issues and Solutions in Fitting, Evaluating, and Interpreting Regression Models

Florian Jaeger and Victor Kuperman
Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an interpretable model

Model Evaluation

July 8, 2009

Hypothesis testing in psycholinguistic research

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

- Next: Provide an overview of (a) and (b).

Overview

- Introduce sample data and simple models
- Towards a model with interpretable coefficients:
- outlier removal
- transformation
- coding, centering, ...
- collinearity
- Model evaluation:
- fitted vs. observed values
- model validation
- investigation of residuals
- case influence, outliers
- Model comparison
- Reporting the model:
- comparing effect sizes
- back-transformation of predictors
- visualization

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Model Evaluation

Beware overfitting
Detect overfitting: Validation
Goodness-of-fit Aside: Model Comparison

Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the
model

Data: Lexical decision response

- Outcome: Correct or incorrect response (Correct)
- Inputs: same as in linear model

Random effects:

Groups	Name	Variance	Std.Dev.
Word	(Intercept)	1.01820	1.00906
Subject	(Intercept)	0.63976	0.79985

Number of obs: 1659, groups: Word, 79; Subject, 21

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the model

Fixed effects:

| | Estimate | Std. Error z value $\operatorname{Pr}(>\|z\|)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | $-1.746 e+00$ | $8.206 e-01$ | -2.128 | 0.033344 | * |
| NativeLanguageOther | $-5.726 e-01$ | $4.639 e-01$ | 1.234 | 0.217104 | |
| Frequency | $5.600 e-01$ | $1.570 e-01$ | -3.567 | 0.000361 | *** |
| Trial | $4.443 e-06$ | $2.965 e-03$ | 0.001 | 0.998804 | |

- estimates for random effects of Subject and Word (no residuals).
- estimates for regression coefficients, standard errors \rightarrow Z- and p-values

Interpretation of coefficients

- In theory, directionality and shape of effects can be tested and immediately interpreted.
- e.g. logit model

```
Fixed effects:
```

| | Estimate | Std. Error z value $\operatorname{Pr}(>\|z\|)$ | Reporting the | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| (Intercept) | $-1.746 e+00$ | $8.206 e-01$ | -2.128 | 0.033344 | * |
| NativeLanguageOther | $5.726 e-01$ | $4.639 e-01$ | 1.234 | 0.217104 | |
| Frequency | $-5.600 e-01$ | $1.570 e-01$ | -3.567 | 0.000361 | *** |
| Trial | $-5.725 e-06$ | $2.965 e-03$ | -0.002 | 0.998460 | |

- ... but can these coefficient estimates be trusted?

Sample Data and Simple Models

Building an interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit Aside: Model Comparison

Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

Modeling schema

Data exploration

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and

 Simple ModelsBuilding an
interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

Data exploration

- Select and understand input variables and outcome based on a-priori theoretical consideration
- How many parameters does your data afford (คoverfitting)?
- Data exploration: Before fitting the model, explore inputs and outputs
- Outliers due to missing data or measurement error (e.g. RTs in SPR < 80msecs).
- NB: postpone distribution-based outlier exclusion until after transformations)
- Skewness in distribution can affect the accuracy of model's estimates (\curvearrowright transformations).

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Understanding input variables

- Explore:
- correlations between predictors (\curvearrowright collinearity).
- non-linearities may become obvious (lowess).

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an

interpretable
model

Data exploration

Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

Non-linearities

- Consider Frequency (already log-transformed in lexdec) as predictor of RT:

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
\rightarrow Assumption of a linearity may be inaccurate.

- Select appropriate \curvearrowright transformation: log, power, sinusoid, etc.
- or use polynomial poly() or splines rcs(), bs(), etc. to \curvearrowright model non-linearities.

Transformation

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

Transformation

- Reasons to transform:
- Conceptually motivated (e.g. log-transformed probabilities)
- Can reduce non-linear to linear relations (cf. previous slide)
- Remove skewness (e.g. by log-transform)
- Common transformation: log, square-root, power, or inverse transformation, etc.

Density, \log RT

Density, log Frequency

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Coding and centering predictors

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor Kuperman
Sample Data and

 Simple Models
Building an

interpretable
model
Data exploration
Transformation

Coding

Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

Coding affects interpretation

Consider a simpler model:

- Treatment (a.k.a. dummy) coding is standard in most stats programs
- NativeLanguage coded as 1 if "other", 0 otherwise.
- Coefficient for (Intercept) reflects reference level English of the factor NativeLanguage.
- Prediction for NativeLanguage $=$ Other is derived by $6.32358+0.15003=6.47361$ (log-transformed reaction times).

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation

Coding

Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

Recoding

- Coding affects interpretation of coefficients.
- E.g., we can recode NativeLanguage into NativeEnglish:

```
> lexdec$NativeEnglish = ifelse(lexdec$NativeLanguage == "English", 1, 0)
> lmer(RT ~ NativeEnglish + Frequency +
+ (1 | Word) + (1 | Subject), data = lexdec)
<...>
    AIC BIC logLik deviance REMLdev
    -886.1 -853.6 449.1 -926.6 -898.1
Random effects:
    Groups Name Variance Std.Dev.
    Word (Intercept) 0.0045808 0.067682
    Subject (Intercept) 0.0184681 0.135897
    Residual 0.0298413 0.172746
Number of obs: 1659, groups: Word, 79; Subject, 21
Fixed effects:
\begin{tabular}{rrr} 
Estimate & Std. Error t value \\
6.32358 & 0.03783 & 167.14 \\
-0.15003 & 0.05646 & 2.66
\end{tabular}
NativeEnglish
    -0.15003 0.05646 2.66
<...>
```

- NB: \curvearrowright Goodness-of-fit (AIC, BIC, loglik, etc.) is not affected by choice between different sets of orthogonal contrasts.

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation

Coding

Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

Other codings of factor

- Treatment coding ...
- makes intercept hard to interpret.
- leads to \curvearrowright collinearity with interactions
- Sum (a.k.a. contrast) coding avoids that problem (in balanced data sets) and makes intercept interpretable (in factorial analyses of balanced data sets).
- Corresponds to ANOVA coding.
- Centers for balanced data set.
- Caution when reporting effect sizes! (R contrast codes as -1 vs. $1 \rightarrow$ coefficient estimate is only half of estimated group difference).
- Other contrasts possible, e.g. to test hypothesis that levels are ordered (contr.poly(), contr.helmert()).

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Centering predictors

- Centering: removal of the mean out of a variable ...
- makes coefficients more interpretable.
- if all predictors are centered \rightarrow intercept is estimated grand mean.
- reduces \curvearrowright collinearity of predictors
- with intercept
- higher-order terms that include the predictor (e.g. interactions)
- Centering does not change ...
- coefficient estimates (it's a linear transformations); including random effect estimates.
- \frown Goodness-of-fit of model (information in the model is the same)

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Centering: An example

- Re-consider the model with NativeEnglish and Frequency. Now with a centered predictors:

```
> lexdec$cFrequency = lexdec$Frequency - mean(lexdec$Frequency)
> lmer(RT ~ cNativeEnglish + cFrequency +
+ (1 | Word) + (1 | Subject), data = lexdec)
```

<...>
Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	6.385090	0.030570	208.87
cNativeEnglish	-0.155821	0.060532	-2.57
cFrequency	-0.042872	0.005827	-7.36

Correlation of Fixed Effects:
(Intr) cNtvEn
cNatvEnglsh 0.000
cFrequency $0.000 \quad 0.000$
\rightarrow Correlation between predictors and intercept gone.
\rightarrow Intercept changed (from 6.678 to 6.385 units): now grand mean (previously: prediction for Frequency $=0$!)
\rightarrow NativeEnglish and Frequency coefs unchanged.

Centering: An interaction example

- Let's add an interaction between NativeEnglish and Frequency.
- Prior to centering: interaction is collinear with main effects.

```
> lmer(RT ~ NativeEnglish * Frequency +
+ (1 | Word) + (1 | Subject), data = lexdec)
<...>
Fixed effects:
\begin{tabular}{lrrr} 
& Estimate & Std. Error & t value \\
(Intercept) & 6.752403 & 0.056810 & 118.86 \\
NativeEnglish & -0.286343 & 0.068368 & -4.19 \\
Frequency & -0.058570 & 0.006969 & -8.40 \\
NativeEnglish:Frequency & 0.027472 & 0.006690 & 4.11
\end{tabular}
<...>
```

```
Correlation of Fixed Effects:
```

Correlation of Fixed Effects:
(Intr) NtvEng Frqncy
(Intr) NtvEng Frqncy
NativEnglsh -0.688
NativEnglsh -0.688
Frequency -0.583 0.255
Frequency -0.583 0.255
NtvEnglsh:F 0.320 -0.465 -0.549

```
NtvEnglsh:F 0.320 -0.465 -0.549
```


Centering: An interaction example (cnt'd)

- After centering:

```
<...>
Fixed effects:
(Intercept)
cNativeEnglish
cFrequency
    -0.042872 0.005827 -7.36
cNativeEnglish:cFrequency 0.027472 0.006690 4.11
Correlation of Fixed Effects:
    (Intr) cNtvEn cFrqnc
cNatvEnglsh 0.000
cFrequency 0.000 0.000
cNtvEngls:F 0.000 0.000 0.000
<...>
```

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding

Centering

Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

Interactions and modeling of non-linearities

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and

 Simple ModelsBuilding an
interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

Interactions and non-linearities

- Include interactions after variables are centered \rightarrow avoids unnecessary \curvearrowright collinearity.
- The same holds for higher order terms when non-linearities in continuous (or ordered) predictors are modeled. Though often centering will not be enough.
- See for yourself: a polynomial of (back-transformed) frequency

```
lexdec$rawFrequency <- round(exp(lexdec$Frequency),0)
lmer(RT ~ poly(rawFrequency,2) +
    (1 | Word) + (1 | Subject), data = lexdec)
```

- ...vs. a polynomial of the centered (back-transformed) frequency

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

```
> lexdec$crawFrequency = lexdec$rawFrequency - mean(lexdec$rawFrequency)
lmer(RT ~ poly(crawFrequency,2) +
    (1 | Word) + (1 | Subject), data = lexdec)
```


Collinearity

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor Kuperman
Sample Data and

 Simple Models
Building an

interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity

What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

Definition of collinearity

- Collinearity: a predictor is collinear with other predictors in the model if there are high (partial) correlations between them.
- Even if a predictor is not highly correlated with any single other predictor in the model, it can be highly collinear with the combination of predictors \rightarrow collinearity will affect the predictor
- This is not uncommon!
- in models with many predictors
- when several somewhat related predictors are included in the model (e.g. word length, frequency, age of acquisition)

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Consequences of collinearity

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity

What is collinearity?
Detecting collinearity
Dealing with collinearity

Extreme collinearity: An example

- Drastic example of collinearity: meanWeight (rating of the weight of the object denoted by the word, averaged across subjects) and meanSize (average rating of the object size) in lexdec.

```
lmer (RT ~ meanSize + (1 | Word) + (1 | Subject), data = lexdec)
Fixed effects:
\begin{tabular}{lrrr} 
& Estimate & Std. Error t value \\
(Intercept) & 6.3891053 & 0.0427533 & 149.44 \\
meanSize & -0.0004282 & 0.0094371 & -0.05
\end{tabular}
```

- n.s. correlation of meanSize with RTs.
- similar n.s. weak negative effect of meanWeight.
- The two predictors are highly correlated ($r>0.999$).

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity

What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation

Extreme collinearity: An example (cnt'd)

- If the two correlated predictors are included in the model...

```
> lmer(RT ~ meanSize + meanWeight +
+ (1 | Word) + (1 | Subject), data = lexdec)
Fixed effects:
\begin{tabular}{lrrr} 
(Intercept) & 5.7379 & 0.1187 & 48.32 \\
meanSize & 1.2435 & 0.2138 & 5.81 \\
meanWeight & -1.1541 & 0.1983 & -5.82
\end{tabular}
Correlation of Fixed Effects:
    (Intr) meanSz
meanSize -0.949
meanWeight 0.942 -0.999
```

- $\mathrm{SE}(\beta) \mathrm{s}$ are hugely inflated (more than by a factor of 20)
- large and highly significant significant counter-directed effects ($\beta \mathrm{s}$) of the two predictors
\rightarrow collinearity needs to be investigated!

Extreme collinearity: An example (cnt'd)

- Objects that are perceived to be unusually heavy for their size tend to be more frequent (\rightarrow accounts for 72% of variance in frequency).
- Both effects apparently disappear though when frequency is included in the model (but cf. \curvearrowright residualization \rightarrow meanSize or meanWeight still has small expected effect beyond Frequency).

```
Fixed effects:
```

	Estimate	Std. Error t value	
(Intercept)	6.64846	0.06247	106.43
cmeanSize	-0.11873	0.35196	-0.34
cmeanWeight	0.13788	0.33114	0.42
Frequency	-0.05543	0.01098	-5.05

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

So what does collinearity do?

- Type II error increases \rightarrow power loss

```
h <- function(n) {
    x <- runif(n)
    y<-x + rnorm(n,0,0.01)
    z<- ((x + y) / 2) + rnorm (n,0,0.2)
    m<- lm(z ~ x + y)
    signif.m.x <- ifelse(summary (m)$coef[2,4] < 0.05, 1, 0)
    signif.m.y <- ifelse(summary (m)$coef[3,4] < 0.05, 1, 0)
    mx <- lm(z ~ x)
    my <- lm(z ~ y)
    signif.mx.x <- ifelse(summary(mx)$coef[2,4] < 0.05, 1, 0)
    signif.my.y <- ifelse(summary (my)$coef[2,4] < 0.05, 1, 0)
    return(c(cor(x,y), signif.m.x, signif.m.y,signif.mx.x, signif.my.y))
}
result <- sapply(rep (M,n), h)
print(paste("x in combined model:", sum(result[2,])))
print(paste("y in combined model:", sum(result[3,])))
print(paste("x in x-only model:", sum(result[4,])))
print(paste("y in y-only model:", sum(result[5,])))
print(paste("Avg. correlation:", mean(result[1,])))
```

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

So what does collinearity do?

- Type II error increases \rightarrow power loss
- Type I error does not increase much (5.165\% Type I error for two predictors with $r>0.9989$ in joined model vs. 5.25% in separate models; 20,000 simulation runs with 100 data points each)

```
set.seed(1)
n <- 100
M <- 20000
f<- function(n) {
    x <- runif(n)
    y<- x + rnorm(n,0,0.01)
    z<- rnorm (n,0,5)
    m<- lm(z ~ x + y)
    mx <- lm(z ~ x)
    my <- lm(z ~ y)
    signifmin <- ifelse(min(summary (m)$coef[2:3,4]) < 0.05, 1, 0)
    signifx <- ifelse(min(summary (mx)$coef[2,4]) < 0.05, 1, 0)
    signify <- ifelse(min(summary(my)$coef[2,4]) < 0.05, 1, 0)
    signifxory <- ifelse(signifx == 1 | signify == 1, 1, 0)
    return(c(cor(x,y),signifmin,signifx,signify,signifxory))
}
result <- sapply(rep (n,M), f)
sum(result[2,])/M # joined model returns >=1 spurious effect
sum(result [3,])/M
sum(result [4,])/M
sum(result[5,])/M # two individual models return >=1 spurious effect
min(result[1,])
```

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the
model

So what does collinearity do?

- Type II error increases \rightarrow power loss
- Type I error does not increase (much)
* But small differences between highly correlated predictors can be highly correlated with another predictors and create 'apparent effects' (like in the case discussed).
\rightarrow Can lead to misleading effects (not technically spurious, but if they we interpret the coefficients causally we will have a misleading result!).
- This problem is not particular to collinearity, but it frequently occurs in the case of collinearity.
- When coefficients are unstable (as in the above case of collinearity) treat this as a warning sign - check for mediated effects.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity

What is collinearity?
Detecting collinearity
Dealing with collinearity

Detecting collinearity

- Mixed model output in R comes with correlation matrix (cf. previous slide).
- Partial correlations of fixed effects in the model.
- Also useful: correlation matrix (e.g. cor(); use Spearman option for categorical predictors) or pairscor.fnc() in languageR for visualization.
- apply to predictors (not to untransformed input variables)!

```
> cor(lexdec[,c(2,3,10, 13)])
\begin{tabular}{lrrrr} 
& RT & Trial & Frequency & Length \\
RT & 1.0000000 & -0.052411295 & -0.213249525 & 0.146738111 \\
Trial & -0.0524113 & 1.000000000 & -0.006849117 & 0.009865814 \\
Frequency & -0.2132495 & -0.006849117 & 1.000000000 & -0.427338136 \\
Length & 0.1467381 & 0.009865814 & -0.427338136 & 1.000000000
\end{tabular}
```

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

Formal tests of collinearity

- Variance inflation factor (VIF, vif()).
- generally, VIF > $10 \rightarrow$ absence of absolute collinearity in the model cannot be claimed.
\star VIF >4 are usually already problematic.
* but, for large data sets, even VIFs >2 can lead inflated standard errors.
- Kappa (e.g. collin.fnc() in languageR)
- generally, c-number (κ) over $10 \rightarrow$ mild collinearity in the model.
- Applied to current data set, ...
> collin.fnc(lexdec $[, c(2,3,10,13)])$ \$cnumber
Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and
Simple Models
Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

- ... gives us a kappa $>90 \rightarrow$ Houston, we have a problem.

Dealing with collinearity

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor Kuperman
Sample Data and

 Simple Models
Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

Dealing with collinearity

- Good news: Estimates are only problematic for those predictors that are collinear.
\rightarrow If collinearity is in the nuisance predictors (e.g. certain controls), nothing needs to be done.
- Somewhat good news: If collinear predictors are of interest but we are not interested in the direction of the effect, we can use \curvearrowright model comparison (rather than tests based on the standard error estimates of coefficients).
- If collinear predictors are of interest and we are interested in the direction of the effect, we need to reduce collinearity of those predictors.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Reducing collinearity

- Centering \curvearrowleft : reduces collinearity of predictor with intercept and higher level terms involving the predictor.
- pros: easy to do and interpret; often improves interpretability of effects.
- cons: none?
- Re-express the variable based on conceptual considerations (e.g. ratio of spoken vs. written frequency in lexdec; rate of disfluencies per words when constituent length and fluency should be controlled).
- pros: easy to do and relatively easy to interpret.
- cons: only applicable in some cases.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Reducing collinearity (cnt'd)

- Stratification: Fit separate models on subsets of data holding correlated predictor A constant.
- If effect of predictor B persists \rightarrow effect is probably real.
- pros: Still relatively easy to do and easy to interpret.
- cons: harder to do for continuous collinear predictors; reduces power, \rightarrow extra caution with null effects; doesn't work for multicollinearity of several predictors.
- Principal Component Analysis (PCA): for n collinear predictors, extract $k<n$ most important orthogonal components that capture $>p \%$ of the variance of these predictors.
- pros: Powerful way to deal with multicollinearity.
- cons: Hard to interpret (\rightarrow better suited for control predictors that are not of primary interest); technically complicated; some decisions involved that affect outcome.

Reduce collinearity (cnt'd)

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

An example of moderate collinearity (cnt'd)

- Consider two moderately correlated variables ($r=-0.49$), (centered) word length and (centered log) frequency:

```
> lmer (RT ~ cLength + cFrequency +
+ (1 | Word) + (1 | Subject), data = lexdec)
<...>
Fixed effects:
    Estimate Std. Error t value
(Intercept) 6.385090 0.034415 185.53
cLength 0.009348 0.004327 2.16
cFrequency -0.037028 0.006303 -5.87
Correlation of Fixed Effects:
    (Intr) cLngth
cLength 0.000
cFrequency 0.000 0.429
<...>
```

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

- Is this problematic? Let's remove collinearity via residualization

Residualization: An example

- Let's regress word length vs. word frequency.
> lexdec\$rLength $=$ residuals(lm(Length \sim Frequency, data $=$ lexdec))
- rLength: difference between actual length and length as predicted by frequency. Related to actual length ($r>0.9$), but crucially not to frequency ($r \ll 0.01$).
- Indeed, collinearity is removed from the model:

```
<...>
Fixed effects:
    Estimate Std. Error t value
(Intercept) 6.385090 0.034415 185.53
rLength 0.009348 0.004327 2.16
cFrequency -0.042872 0.005693 -7.53
Correlation of Fixed Effects:
    (Intr) rlngth
rLength 0.000
cFrequency 0.000 0.000
```

$\rightarrow \mathrm{SE}(\beta)$ estimate for frequency predictor decreased
\rightarrow larger t-value

Residualization: An example (cnt'd)

- Q: What precisely is rLength?
- A: Portion of word length that is not explained by (a linear relation to log) word frequency.
\rightarrow Coefficient of rLength needs to be interpreted as such
- No trivial way of back-transforming to Length.
- NB: We have granted frequency the entire portion of the variance that cannot unambiguously attributed to either frequency or length!
\rightarrow If we choose to residualize frequency on length (rather than the inverse), we may see a different result.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Understanding residualization

- So, let's regress frequency against length.
- Here: no qualitative change, but word length is now highly significant (random effect estimates unchanged)

```
> lmer(RT ~ cLength + rFrequency +
+(1 | Word) + (1 | Subject), data = lexdec)
<...>
Fixed effects:
    Estimate Std. Error t value
(Intercept) 6.385090 0.034415 185.53
cLength 0.020255 0.003908 5.18
rFrequency -0.037028 0.006303 -5.87
Correlation of Fixed Effects:
    (Intr) cLngth
cLength 0.000
rFrequency 0.000 0.000
<...>
```

\rightarrow Choosing what to residualize, changes interpretation of $\beta \mathrm{s}$ and hence the hypothesis we're testing.

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

Extreme collinearity: ctn'd

- we can now residualize meanWeight against meanSize and Frequency, and
- and residualize meanSize against Frequency.
- include the transformed predictors in the model.

```
> lexdec$rmeanSize <- residuals(lm(cmeanSize ~ Frequency + cmeanWeight,
+ data=lexdec))
> lexdec$rmeanWeight <- residuals(lm(cmeanWeight ~ Frequency,
                data=lexdec))
lmer(RT ~ rmeanSize + rmeanWeight + Frequency + (1/Subject) + (1/Word),
+ data=lexdec)
\begin{tabular}{lrrr} 
(Intercept) & 6.588778 & 0.043077 & 152.95 \\
rmeanSize & -0.118731 & 0.351957 & -0.34 \\
rmeanWeight & 0.026198 & 0.007477 & 3.50 \\
Frequency & -0.042872 & 0.005470 & -7.84
\end{tabular}
```

- NB: The frequency effect is stable, but the meanSize vs. meanWeight effect depends on what is residualized against what.

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Residualization: Which predictor to residualize?

- What to residualize should be based on conceptual considerations (e.g. rate of disfluencies $=$ number of disfluencies \sim number of words).
- Be conservative with regard to your hypothesis:
- If the effect only holds under some choices about residualization, the result is inconclusive.
- We usually want to show that a hypothesized effect holds beyond what is already known or that it subsumes other effects.
\rightarrow Residualize effect of interest.
- E.g. if we hypothesize that a word's predictability affects its duration beyond its frequency \rightarrow residuals(lm(Predictability \sim Frequency, data)).

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an

interpretable
model
Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities

Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity
Model Evaluation
Reporting the model

- (if effect direction is not important, see also \curvearrowright model comparison)

Modeling schema

outlier removal

Sample Data and Simple Models

Building an interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Model Evaluation

Beware overfitting
Detect overfitting: Validation
Goodness-of-fit
Aside: Model Comparison

Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects

Overfitting

Overfitting: Fit might be too tight due to the exceeding number of parameters (coefficients). The maximal number of predictors that a model allows depends on their distribution and the distribution of the outcome.

- Rules of thumb:
- linear models: > 20 observations per predictor.
- logit models: the less frequent outcome should be observed >10 times more often than there predictors in the model.
- Predictors count: one per each random effect + residual, one per each fixed effect predictor + intercept, one per each interaction.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Validation

Validation allows us to detect overfitting:

- How much does our model depend on the exact data we have observed?
- Would we arrive at the same conclusion (model) if we had only slightly different data, e.g. a subset of our data?
- Bootstrap-validate your model by repeatedly sampling from the population of speakers/items with replacement. Get estimates and confidence intervals for fixed effect coefficients to see how well they generalize (Baayen, 2008:283; cf. bootcov () for ordinary regression models).

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Visualize validation

- Plot predicted vs. observed (averaged) outcome.
- E.g. for logit models, plot.logistic.fit.fnc in languageR or similar function (cf. http://hplab.wordpress.com)
- The following shows a badly fitted model:

```
> lexdec$NativeEnglish = ifelse(lexdec$NativeLanguage == "English", 1, 0)
> lexdec$cFrequency = lexdec$Frequency - mean(lexdec$Frequency)
> lexdec$cNativeEnglish = lexdec$NativeEnglish - mean(lexdec$NativeEnglish)
> lexdec$Correct = ifelse(lexdec$Correct == "correct", T, F)
> l <- glmer(Correct ~ cNativeEnglish * cFrequency + Trial +
    (1 | Word) + (1 | Subject),
    data = lexdec, family="binomial")
```


Fitted values

So far, we've been worrying about coefficients, but the real model output are the fitted values.
Goodness-of-fit measures assess the relation between fitted (a.k.a. predicted) values and actually observed outcomes.

- linear models: Fitted values are predicted numerical outcomes.

	RT	fitted
1	6.340359	6.277565
2	6.308098	6.319641
3	6.349139	6.265861
4	6.186209	6.264447

- logit models: Fitted values are predicted log-odds (and hence predicted probabilities) of outcome.

	Correct	fitted
1	correct	0.9933675
2	correct	0.9926289
3 correct	0.9937420	
4	correct	0.9929909

Goodness-of-fit and data likelihood

- Data likelihood: What is the probability that we would observe the data we have given the model (i.e. given the predictors we chose and given the 'best' parameter estimates for those predictors).
- Standard model output usually includes such measures, e.g. in R:

```
    AIC BIC logLik deviance REMLdev
```

-96.48 -63.41 $55.24 \quad-123.5 \quad-110.5$

- log-likelihood, $\log L i k=\log (L)$. This is the maximized model's log data likelihood, no correction for the number of parameters. Larger (i.e. closer to zero) is better. The value for log-likelihood should always be negative, and AIC, BIC etc. are positive. \rightarrow current bug in the lmer () output for linear models.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Measures built on data likelihood (contd')

- Other measures trade off goodness-of-fit ($\curvearrowleft d a t a$ likelihood) and model complexity (number of parameters; cf. Occam's razor; see also \curvearrowright model comparison).
- Deviance: -2 times log-likelihood ratio. Smaller is better.
- Aikaike Information Criterion, $\mathrm{AIC}=k-2 \ln (L)$, where k is the number of parameters in the model. Smaller is better.
- Bayesian Information Criterion, $\mathrm{BIC}=k * \ln (n)-2 \ln (L)$, where k is the number of parameters in the model, and n is the number of observations. Smaller is better.

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and
Simple Models
Building an
interpretable
model
Model Evaluation
Beware overfitting
Detect overfitting: Validation
Goodness-of-fit

Goodness-of-fit: Mixed Logit Models

```
    AIC BIC logLik deviance
499.1 537 -242.6 485.1
```

* but no known closed form solution to likelihood function of mixed logit models \rightarrow current implementations use Penalized Quasi-Likelihoods or better Laplace Approximation of the likelihood (default in R; cf. Harding \& Hausman, 2007)
- Discouraged:
\star pseudo- R^{2} a la Nagelkerke (cf. along the lines of http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm)
\star classification accuracy: If the predicted probability is $<0.5 \rightarrow$ predicted outcome $=0$; otherwise 1 . Needs to be compared against baseline. (cf. Somer's $D_{x y}$ and C index of concordance).

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison

Model comparison

Florian Jaeger and Victor Kuperman

- Models can be compared for performance using any goodness-of-fit measures. Generally, an advantage in one measure comes with advantages in others, as well.
- To test whether one model is significantly better than another model:
- likelihood ratio test (for nested models only)
- (DIC-based tests for non-nested models have also been proposed).

Sample Data and Simple Models

Building an
interpretable
model

Model Evaluation

Likelihood ratio test for nested models

- -2 times ratio of likelihoods (or difference of log likelihoods) of nested model and super model.
- Distribution of likelihood ratio statistic follows asymptotically the χ-square distribution with $D F\left(\right.$ model $\left._{\text {super }}\right)-D F\left(\right.$ model $\left._{\text {nested }}\right)$ degrees of freedom.
- χ-square test indicates whether sparing extra df's is justified by the change in the log-likelihood.
- in R: anova(model1, model2)
- NB: use restricted maximum likelihood-fitted models to compare models that differ in random effects.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Example of model comparison

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Beware overfitting
Detect overfitting:
Validation
Goodness-of-fit
$>$ super. 1 mex $=1 \operatorname{mer}(R T \sim$ rawFrequency $+(1 /$ Subject $)+(1 /$ Word $)$, data $=1 e x d e c)$
$>$ nested.lmer $=1$ mer $(R T \sim$ rawFrequency $+(1+T r i a l / S u b j e c t)+(1 /$ Word), data $=1 e x d e c)$
$>$ anova(super.lmer, nested. Imer)

	Df	AIC	BIC	logLik	Chisq Chi Df Pr (>Chisq)		
super.lmer	5	-910.41	-883.34	460.20			
nested.lmer	7	-940.71	-902.81	477.35	34.302	2	$3.56 e-08$ ***

\rightarrow change in log-likelihood justifies inclusion Subject-specific slopes for Trial, and the correlation parameter between trial intercept and slope.

Model comparison: Trade-offs

- Compared to tests based on $\mathrm{SE}(\beta)$, model comparison
- robust against collinearity
- does not test directionality of effect
* Suggestion: In cases of high collinearity ...
- first determine which predictors are subsumed by others (model comparison, e.g. $p>0.7)$) \rightarrow remove them,
- then use $\mathrm{SE}(\beta)$-based tests (model output) to test effect direction on simple model (with reduced collinearity).

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation

Detect overfitting:
Validation
Goodness-of-fit
Aside: Model Comparison

Reporting the

model

Sample Data and Simple Models

Building an interpretable model

Data exploration
Transformation
Coding
Centering
Interactions and modeling of non-linearities
Collinearity
What is collinearity?
Detecting collinearity
Dealing with collinearity

Model Evaluation

Beware overfitting
Detect overfitting: Validation
Goodness-of-fit Aside: Model Comparison

Reporting the model

Describing Predictors
What to report
Back-transforming coefficients
Comparing effect sizes
Visualizing effects

Reporting the model's performance

- for the overall performance of the model, report goodness-of-fit measures:
- $D_{x y}$ or concordance C-number. Report the increase in classification accuracy over and beyond the baseline model.
- for model comparison: report the p-value of the log-likelihood ratio test.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the model
Describing Predictors
What to report
Back-transforming

Before you report the model coefficients

- Transformations, centering, (potentially \curvearrowright standardizing), coding, residualization should be described as part of the predictor summary.
- Where possible, give theoretical, and/or empirical arguments for any decision made.
- Consider reporting scales for outputs, inputs and predictors (e.g., range, mean, sd, median).

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an

Some considerations for good science

- Do not report effects that heavily depend on the choices you have made;
- Do not fish for effects. There should be a strong theoretical motivation for what variables to include and in what way.
- To the extent that different ways of entering a predictor are investigated (without a theoretical reason), do make sure your conclusions hold for all ways of entering the predictor or that the model you choose to report is superior (model comparison \curvearrowleft).

What to report about effects

- \frown Effect size (What is that actually?)
- Effect direction
- Effect shape (tested by significance of non-linear components \& superiority of transformed over un-transformed variants of the same input variable); plus visualization

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the model

Describing Predictors
What to report
Back-transforming
Comparing effect sizes
Visualizing effects

Interpretation of coefficients

```
Fixed effects:
\begin{tabular}{lrrr} 
& \multicolumn{2}{c}{ Estimate Std. Error t value } \\
(Intercept) & 6.323783 & 0.037419 & 169.00 \\
NativeLanguageOther & 0.150114 & 0.056471 & 2.66 \\
cFrequency & -0.039377 & 0.005552 & -7.09
\end{tabular}
```

- The increase in 1 log unit of cFrequency comes with a -0.039 log units decrease in log-odds.
- Utterly uninterpretable!
- To get estimates in sensible units we need to back-transform both our predictors and our outcomes.
- decentralize cFrequency, and
- exponentially-transform logged Frequency and RT.
- if necessary, we de-residualize and de-standardize predictors and outcomes.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes
Visualizing effects

Getting interpretable effects

- estimate the effect in ms across the frequency range (or better from 5th to 95 th percentile) and then the effect for a unit of frequency.

```
> intercept = as.vector(fixef(lexdec.lmer4) [1])
> betafreq = as.vector(fixef(lexdec.lmer4) [3])
> eff = exp(intercept + betafreq * max(lexdec$Frequency)) -
> exp(intercept + betafreq * min(lexdec$Frequency)))
[1] -109.0357 #RT decrease across the entire range of Frequency
> range = exp(max(lexdec$Frequency)) -
> exp(min(lexdec$Frequency))
[1] 2366.999
```

- Report that the full effect of Frequency on RT is a 109 ms decrease.

But here there is no simple relation between RTs and frequency, so resist reporting "the difference in 100 occurrences comes with a 4 ms decrease of RT".

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and

 Victor KupermanSample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the
model
Describing Predictors
What to report
Back-transforming coefficients

Comparing effect sizes

Comparing effect sizes

- It ain't trivial: What is meant by effect size?
- Change of outcome if 'feature' is present? \rightarrow coefficient
- per unit?
- overall range?
- But that does not capture how much an effect affects language processing:
- What if the feature is rare in real language use ('availability of feature')? Could use ...
\rightarrow Variance accounted for (goodness-of-fit \curvearrowleft improvement associated with factor)
\rightarrow Standardized coefficient (gives direction of effect)
\star Standardization: subtract the mean and divide by two standard deviations.
- standardized predictors are on the same scale as binary factors (cf. Gelman \& Hill 2006).
- makes all predictors (relatively) comparable.

Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the
model
Describing Predictors
What to report
Back-transforming

Comparing effect sizes
Visualizing effects

Plotting coefficients of mixed logit models

- Log-odd units can be automatically transformed to probabilities.
- pros: more familiar space
- cons: effects are linear in log-odds space, but non-linear in probability space; linear slopes are hard to compare in probability space; non-linearities in log-odd space are hard to interpret

Quick Overview of

 Issues and Solutions in LogisticRegression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the model

Describing Predictors
What to report
Back-transforming

Comparing effect sizes
Visualizing effects

Plotting coefficients of mixed logit models (contd')

- For an alternative way, see http://hlplab.wordpress.com/:

```
> data(lexdec)
> lexdec$NativeEnglish = ifelse(lexdec$NativeLanguage == "English", 1, 0)
> lexdec$rawFrequency = exp(lexdec$Frequency)
> lexdec$cFrequency = lexdec$Frequency - mean(lexdec$Frequency)
> lexdec$cNativeEnglish = lexdec$NativeEnglish - mean(lexdec$NativeEnglish)
> lexdec$Correct = ifelse(lexdec$Correct == "correct", T, F)
> l<- lmer(Correct ~ cNativeEnglish + cFrequency + Trial +
+ (1 | Word) + (1 | Subject), data = lexdec, family="binomial"
> my.glmerplot(l, "cFrequency", predictor= lexdec$rawFrequency,
    predictor.centered=T, predictor.transform=log,
    name.outcome="correct answer", xlab= ex, fun=plogis)
```


Quick Overview of Issues and Solutions in Logistic
Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
" hodel
Model Evaluation
Reporting the model

Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects

Plotting coefficients of mixed logit models (contd')

- Great for outlier detection. Plot of predictor in log-odds space (actual space in which model is fit):

Quick Overview of Issues and Solutions in Logistic Regression Modeling

Florian Jaeger and Victor Kuperman

Sample Data and Simple Models

Building an
interpretable
model
Model Evaluation
Reporting the
model
Describing Predictors
What to report
Back-transforming
coefficients
Comparing effect sizes
Visualizing effects

