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Goals of this talk

I Briefly review generalized linear models and how to use them

I Give a precise description of multi-level models

I Show how to draw inferences using a multi-level model (fitting
the model)

I Discuss how to interpret model parameter estimates
I Fixed effects
I Random effects



Reviewing generalized linear models I

Goal: model the effects of predictors (independent variables) X on
a response (dependent variable) Y .

The picture:
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Reviewing GLMs II

Assumptions of the generalized linear model (GLM):

1. Predictors {Xi} influence Y through the mediation of a linear
predictor η;

2. η is a linear combination of the {Xi}:

η = α + β1X1 + · · ·+ βNXN (linear predictor)

3. η determines the predicted mean µ of Y

η = l(µ) (link function)

4. There is some noise distribution of Y around the predicted
mean µ of Y :

P(Y = y ;µ)
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Reviewing GLMs III

Linear regression, which underlies ANOVA, is a kind of generalized
linear model.

I The predicted mean is just the linear predictor:

η = l(µ) = µ

I Noise is normally (=Gaussian) distributed around 0 with
standard deviation σ:

ε ∼ N(0, σ)

I This gives us the traditional linear regression equation:

Y =

Predicted Mean µ = η︷ ︸︸ ︷
α + β1X1 + · · ·+ βnXn +

Noise∼N(0,σ)︷︸︸︷
ε
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Reviewing GLMs IV

Y =

Predicted Meanz }| {
α + β1X1 + · · · + βnXn +

Noise∼N(0,σ)z}|{
ε

I How do we fit the parameters βi and σ (choose model
coefficients)?

I There are two major approaches (deeply related, yet different)
in widespread use:

I The principle of maximum likelihood: pick parameter values
that maximize the probability of your data Y

choose {βi} and σ that make the likelihood
P(Y |{βi}, σ) as large as possible

I Bayesian inference: put a probability distribution on the model
parameters and update it on the basis of what parameters best
explain the data
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Reviewing GLMs V: a simple example

I You are studying non-word RTs in a lexical-decision task

tpozt Word or non-word?
houze Word or non-word?

I Non-words with different neighborhood densities∗ should have
different average RT ∗(= number of neighbors of edit-distance 1)

I A simple model: assume that neighborhood density has a
linear effect on average RT, and trial-level noise is normally
distributed∗ ∗(n.b. wrong–RTs are skewed—but not horrible.)

I If xi is neighborhood density, our simple model is

RTi = α + βxi +

∼N(0,σ)︷︸︸︷
εi

I We need to draw inferences about α, β, and σ

I e.g., “Does neighborhood density affects RT?”→ is β reliably
non-zero?
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Reviewing GLMs VI

I We’ll use length-4 nonword data from (Bicknell et al., 2008),
such as:

Few neighbors Many neighbors
gaty peme rixy lish pait yine

I There’s a wide range of neighborhood density:

Number of neighbors
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Reviewing GLMs VII: maximum-likelihood model fitting

RTi = α + βXi +

∼N(0,σ)︷︸︸︷
εi

I Here’s a translation of our simple model into R:

RT ∼ 1 + x

I The noise is implicit in asking R to fit a linear model

I (We can omit the 1; R assumes it unless otherwise directed)

I Example of fitting via maximum likelihood: one subject from
Bicknell et al. (2008)

> m <- glm(RT ~ neighbors, d, family="gaussian")

> summary(m)

[...]
Estimate Std. Error t value Pr(>|t|)

(Intercept) 382.997 26.837 14.271 <2e-16 ***
neighbors 4.828 6.553 0.737 0.466

> sqrt(summary(m)[["dispersion"]])

[1] 107.2248

Gaussian noise, implicit intercept

α̂

β̂

σ̂
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Reviewing GLMs: maximum-likelihood fitting VIII

Intercept 383.00
neighbors 4.83
σ̂ 107.22

I Estimated coefficients are
what underlies “best linear
fit” plots
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Reviewing GLMs IX: Bayesian model fitting

P({βi}, σ|Y ) =

Likelihoodz }| {
P(Y |{βi}, σ)

Priorz }| {
P({βi}, σ)

P(Y )

I Alternative to
maximum-likelihood:
Bayesian model fitting

I Simple (uniform, non-informative)

prior: all combinations of
(α, β, σ) equally probable

I Multiply by likelihood →
posterior probability
distribution over (α, β, σ)

I Bound the region of highest
posterior probability
containing 95% of
probability density → HPD
confidence region
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Multi-level Models

I But of course experiments don’t have just one participant

I Different participants may have different idiosyncratic behavior

I And items may have idiosyncratic properties too

I We’d like to take these into account, and perhaps investigate
them directly too.

I This is what multi-level (hierarchical, mixed-effects) models are
for!



Multi-level Models II

I Recap of the graphical picture of a single-level model:
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Multi-level Models III: the new graphical picture
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Multi-level Models IV

An example of a multi-level model:

I Back to your lexical-decision experiment

tpozt Word or non-word?
houze Word or non-word?

I Non-words with different neighborhood densities should have
different average decision time

I Additionally, different participants in your study may also
have:

I different overall decision speeds
I differing sensitivity to neighborhood density

I You want to draw inferences about all these things at the
same time
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Multi-level Models V: Model construction

I Once again we’ll assume for simplicity that the number of
word neighbors x has a linear effect on mean reading time,
and that trial-level noise is normally distributed∗

I Random effects, starting simple: let each participant i have
idiosyncratic differences in reading speed

RTij = α + βxij +

∼N(0,σb)︷︸︸︷
bi +

Noise∼N(0,σε)︷︸︸︷
εij

I In R, we’d write this relationship as

I Once again we can leave off the 1, and the noise term εij is
implicit
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Multi-level Models VI: simulating data

RTij = α + βxij +

∼N(0,σb)︷︸︸︷
bi +

Noise∼N(0,σε)︷︸︸︷
εij

I One beauty of multi-level models is that you can simulate
trial-level data

I This is invaluable for achieving deeper understanding of both
your analysis and your data

## simulate some data

> sigma.b <- 125 # inter-subject variation larger than

> sigma.e <- 40 # intra-subject, inter-trial variation

> alpha <- 500

> beta <- 12

> M <- 6 # number of participants

> n <- 50 # trials per participant

> b <- rnorm(M, 0, sigma.b) # individual differences

> nneighbors <- rpois(M*n,3) + 1 # generate num. neighbors

> subj <- rep(1:M,n)

> RT <- alpha + beta * nneighbors + # simulate RTs!

b[subj] + rnorm(M*n,0,sigma.e) #
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Multi-level Models VII: simulating data

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8

40
0

60
0

80
0

10
00

# Neighbors

R
T

I Participant-level clustering is easily visible

I This reflects the fact that inter-participant variation (125ms)
is larger than inter-trial variation (40ms)

I And the effects of neighborhood density are also visible
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I Participant-level clustering is easily visible

I This reflects the fact that inter-participant variation (125ms)
is larger than inter-trial variation (40ms)

I And the effects of neighborhood density are also visible
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I Participant-level clustering is easily visible

I This reflects the fact that inter-participant variation (125ms)
is larger than inter-trial variation (40ms)

I And the effects of neighborhood density are also visible



Multi-level Models VII: simulating data
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I Participant-level clustering is easily visible

I This reflects the fact that inter-participant variation (125ms)
is larger than inter-trial variation (40ms)

I And the effects of neighborhood density are also visible



Statistical inference with multi-level models

RTij = α + βxij +

∼N(0,σb)︷︸︸︷
bi +

Noise∼N(0,σε)︷︸︸︷
εij

I Thus far, we’ve just defined a model and used it to generate
data

I We linguists are usually in the opposite situation. . .
I We have data and we need to infer a model

I Specifically, the “fixed-effect” parameters α, β, and σε, plus the
parameter governing inter-subject variation, σb

I e.g., hypothesis tests about effects of neighborhood density:
can we reliably infer that β is {non-zero, positive, . . . }?

I Fortunately, we can use the same principles as before to do
this:

I The principle of maximum likelihood
I Or Bayesian inference
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Fitting a multi-level model using maximum likelihood

RTij = α + βxij +

∼N(0,σb)︷︸︸︷
bi +

Noise∼N(0,σε)︷︸︸︷
εij

> m <- lmer(time ~ neighbors.centered +

(1 | participant),dat,REML=F)

> print(m,corr=F)

[...]
Random effects:
Groups Name Variance Std.Dev.
participant (Intercept) 4924.9 70.177
Residual 19240.5 138.710
Number of obs: 1760, groups: participant, 44

Fixed effects:
Estimate Std. Error t value

(Intercept) 583.787 11.082 52.68
neighbors.centered 8.986 1.278 7.03

α̂

β̂

σ̂b

σ̂ε
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Interpreting parameter estimates

Intercept 583.79
neighbors.centered 8.99
σ̂b 70.18
σ̂ε 138.7

I The fixed effects are interpreted just as in a traditional
single-level model:

I The ‘base’ RT for a non-word in this study is 583.79ms
I Every extra neighbor increases ‘base’ RT by 8.99ms

I Inter-trial variability σε also has the same interpretation
I Inter-trial variability for a given participant is Gaussian,

centered around the participant+word-specific mean with
standard deviation 138.7ms

I Inter-participant variability σb is what’s new:
I Variability in average RT in the population from which the

participants were drawn has standard deviation 70.18ms
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Inferences about cluster-level parameters

RTij = α + βxij +

∼N(0,σb)︷︸︸︷
bi +

Noise∼N(0,σε)︷︸︸︷
εij

I What about the participants’ idiosyncracies themselves—the
bi?

I We can also draw inferences about these—you may have
heard about BLUPs

I To understand these: committing to fixed-effect and
random-effect parameter estimates determines a conditional
probability distribution on participant-specific effects:

P(bi |α̂, β̂, σ̂b, σ̂ε)

I The BLUPS are the conditional modes of bi—the choices that
maximize the above probability
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Inferences about cluster-level parameters II

I The BLUP participant-specific ‘base’ RTs for this dataset are
black lines on the base of this graph
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I The solid line is a guess at their distribution

I The dotted line is the distribution predicted by the model for
the population from which the participants are drawn

I Reasonably close correspondence
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Inference about cluster-level parameters III

I Participants may also have idiosyncratic sensitivities to
neighborhood density

I Incorporate by adding cluster-level slopes into the model:

RTij = α + βxij +

∼N(0,Σb)︷ ︸︸ ︷
b1i + b2i xij +

Noise∼N(0,σε)︷︸︸︷
εij

I In R (once again we can omit the 1’s):

RT ∼ 1 + x + (1 + x | participant)

> lmer(RT ~ neighbors.centered +

(neighbors.centered | participant), dat,REML=F)

[...]
Random effects:
Groups Name Variance Std.Dev. Corr
participant (Intercept) 4928.625 70.2042

neighbors.centered 19.421 4.4069 -0.307
Residual 19107.143 138.2286

These three numbers jointly
characterize Σ̂b
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Inference about cluster-level parameters IV
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Bayesian inference for multilevel models

P({βi}, σb, σε|Y ) =

Likelihoodz }| {
P(Y |{βi}, σb, σε)

Priorz }| {
P({βi}, σb, σε)

P(Y )

I We can also use Bayes’
rule to draw inferences
about fixed effects

I Computationally more
challenging than with
single-level regression;
Markov-chain Monte
Carlo (MCMC) sampling
techniques allow us to
approximate it
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Why do you care???

I You may be asking yourself:

Why did I come to this workshop? I could do
everything you just did with an ANCOVA, treating
participant as a random factor, or by looking at
participant means.



Why do you care??? II

Why did I come to this workshop? I could do every-
thing you just did with an ANCOVA, treating partici-
pant as a random factor, or by looking at participant
means.

I Yes, but there are several respects in which multi-level models
go beyond AN(C)OVA:

1. They handle imbalanced datasets just as well as balanced
datasets

2. You can use non-linear linking functions (e.g., logit models for
binary-choice data)

3. You can cross cluster-level effects
I Every trial belongs to both a participant cluster and an item

cluster
I You can build a single unified model for inferences from your

data
I ANOVA requires separate by-participants and by-items

analyses (quasi-F ′ is quite conservative)
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Summary

I Multi-level models may seem strange and foreign

I But all you really need to understand them is three basic
things

I Generalized linear models
I The principle of maximum likelihood
I Bayesian inference

I As you will see in the rest of the workshop, these models open
up many new interesting doors!
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