A Brief and Friendly Introduction to Mixed-Effects Models in Linguistics

slides by Roger Levy
 presented (and slightly edited) by Klinton Bicknell
 UC San Diego, Department of Linguistics

15 July 2009

Goals of this talk

- Briefly review generalized linear models and how to use them
- Give a precise description of multi-level models
- Show how to draw inferences using a multi-level model (fitting the model)
- Discuss how to interpret model parameter estimates
- Fixed effects
- Random effects

Reviewing generalized linear models I

Goal: model the effects of predictors (independent variables) \mathbf{X} on a response (dependent variable) Y.

Reviewing generalized linear models I

Goal: model the effects of predictors (independent variables) \mathbf{X} on a response (dependent variable) Y.

The picture:

Reviewing generalized linear models I

Goal: model the effects of predictors (independent variables) \mathbf{X} on a response (dependent variable) Y.

The picture:

Reviewing generalized linear models I

Goal: model the effects of predictors (independent variables) \mathbf{X} on a response (dependent variable) Y.

The picture:

Reviewing GLMs II

Assumptions of the generalized linear model (GLM):

1. Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;

Reviewing GLMs II

Assumptions of the generalized linear model (GLM):

1. Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;
2. η is a linear combination of the $\left\{X_{i}\right\}$:

Reviewing GLMs II

Assumptions of the generalized linear model (GLM):

1. Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;
2. η is a linear combination of the $\left\{X_{i}\right\}$:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{N} X_{N} \quad \text { (linear predictor) }
$$

Reviewing GLMs II

Assumptions of the generalized linear model (GLM):

1. Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;
2. η is a linear combination of the $\left\{X_{i}\right\}$:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{N} X_{N} \quad \text { (linear predictor) }
$$

3. η determines the predicted mean μ of Y

$$
\eta=I(\mu) \quad \text { (link function) }
$$

Reviewing GLMs II

Assumptions of the generalized linear model (GLM):

1. Predictors $\left\{X_{i}\right\}$ influence Y through the mediation of a linear predictor η;
2. η is a linear combination of the $\left\{X_{i}\right\}$:

$$
\eta=\alpha+\beta_{1} X_{1}+\cdots+\beta_{N} X_{N} \quad \text { (linear predictor) }
$$

3. η determines the predicted mean μ of Y

$$
\eta=I(\mu) \quad \text { (link function) }
$$

4. There is some noise distribution of Y around the predicted mean μ of Y :

$$
P(Y=y ; \mu)
$$

Reviewing GLMs III

Linear regression, which underlies ANOVA, is a kind of generalized linear model.

Reviewing GLMs III

Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:

$$
\eta=I(\mu)=\mu
$$

Reviewing GLMs III

Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:

$$
\eta=I(\mu)=\mu
$$

- Noise is normally (=Gaussian) distributed around 0 with standard deviation σ :

$$
\epsilon \sim N(0, \sigma)
$$

Reviewing GLMs III

Linear regression, which underlies ANOVA, is a kind of generalized linear model.

- The predicted mean is just the linear predictor:

$$
\eta=I(\mu)=\mu
$$

- Noise is normally (=Gaussian) distributed around 0 with standard deviation σ :

$$
\epsilon \sim N(0, \sigma)
$$

- This gives us the traditional linear regression equation:

$$
Y=\overbrace{\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}}^{\text {Predicted Mean } \mu=\eta}+\overbrace{\epsilon}^{\text {Noise } \sim N(0, \sigma)}
$$

Reviewing GLMs IV

$$
Y=\overbrace{\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}}^{\text {Predicted Mean }}+\overbrace{\epsilon}^{\text {Noise } \sim N(0, \sigma)}
$$

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:

Reviewing GLMs IV

$$
Y=\overbrace{\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}}^{\text {Predicted Mean }}+\overbrace{\epsilon}^{\text {Noise~ } \sim N(0, \sigma)}
$$

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y
choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible

Reviewing GLMs IV

$$
Y=\overbrace{\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}}^{\text {Predicted Mean }}+\overbrace{\epsilon}^{\text {Noise } \sim N(0, \sigma)}
$$

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y
choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible
- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

Reviewing GLMs IV

$$
Y=\overbrace{\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}}^{\text {Predicted Mean }}+\overbrace{\epsilon}^{\text {Noise } \sim N(0, \sigma)}
$$

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y
choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible
- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right) \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Prior }}}{P(Y)}
$$

Reviewing GLMs IV

$$
Y=\overbrace{\alpha+\beta_{1} X_{1}+\cdots+\beta_{n} X_{n}}^{\text {Predicted Mean }}+\overbrace{\epsilon}^{\text {Noise } \sim N(0, \sigma)}
$$

- How do we fit the parameters β_{i} and σ (choose model coefficients)?
- There are two major approaches (deeply related, yet different) in widespread use:
- The principle of maximum likelihood: pick parameter values that maximize the probability of your data Y
choose $\left\{\beta_{i}\right\}$ and σ that make the likelihood $P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)$ as large as possible
- Bayesian inference: put a probability distribution on the model parameters and update it on the basis of what parameters best explain the data

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\frac{\overbrace{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Likelihood }} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Prior }}}{P(Y)}
$$

Reviewing GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task

Reviewing GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task tpozt Word or non-word?

Reviewing GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task

tpozt	Word or non-word?
houze	Word or non-word?

Reviewing GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task
tpozt \quad Word or non-word?
houze \quad Word or non-word?
- Non-words with different neighborhood densities* should have different average RT * (= number of neighbors of edit-distance 1)

Reviewing GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task
tpozt \quad Word or non-word?
houze \quad Word or non-word?
- Non-words with different neighborhood densities* should have different average RT * (= number of neighbors of edit-distance 1)
- A simple model: assume that neighborhood density has a linear effect on average RT, and trial-level noise is normally distributed* *(n.b. wrong-RTs are skewed—but not horrible.)

Reviewing GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task

tpozt	Word or non-word?
houze	Word or non-word?

- Non-words with different neighborhood densities* should have different average RT * (= number of neighbors of edit-distance 1)
- A simple model: assume that neighborhood density has a linear effect on average RT, and trial-level noise is normally distributed* *(n.b. wrong-RTs are skewed—but not horrible.)
- If x_{i} is neighborhood density, our simple model is

$$
R T_{i}=\alpha+\beta x_{i}+\overbrace{\epsilon_{i}}^{\sim N(0, \sigma)}
$$

Reviewing GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task

tpozt	Word or non-word?
houze	Word or non-word?

- Non-words with different neighborhood densities* should have different average RT * (= number of neighbors of edit-distance 1)
- A simple model: assume that neighborhood density has a linear effect on average RT, and trial-level noise is normally distributed* *(n.b. wrong-RTs are skewed—but not horrible.)
- If x_{i} is neighborhood density, our simple model is

$$
R T_{i}=\alpha+\beta x_{i}+\overbrace{\epsilon_{i}}^{\sim N(0, \sigma)}
$$

- We need to draw inferences about α, β, and σ

Reviewing GLMs V: a simple example

- You are studying non-word RTs in a lexical-decision task
tpozt \quad Word or non-word?
houze \quad Word or non-word?
- Non-words with different neighborhood densities* should have different average RT * (= number of neighbors of edit-distance 1)
- A simple model: assume that neighborhood density has a linear effect on average RT, and trial-level noise is normally distributed* *(n.b. wrong-RTs are skewed—but not horrible.)
- If x_{i} is neighborhood density, our simple model is

$$
R T_{i}=\alpha+\beta x_{i}+\overbrace{\epsilon_{i}}^{\sim N(0, \sigma)}
$$

- We need to draw inferences about α, β, and σ
- e.g., "Does neighborhood density affects RT?" \rightarrow is β reliably non-zero?

Reviewing GLMs VI

- We'll use length-4 nonword data from (Bicknell et al., 2008), such as:

> | Few neighbors | Many neighbors | |
| :---: | :--- | :---: |
| gaty peme rixy | lish pait yine | |

Reviewing GLMs VI

- We'll use length-4 nonword data from (Bicknell et al., 2008), such as:

Few neighbors
gaty peme rixy

Many neighbors
lish pait yine

- There's a wide range of neighborhood density:

Number of neighbors

Reviewing GLMs VII: maximum-likelihood model fitting

- Here's a translation of our simple model into R :

$$
R T \sim 1+x
$$

Reviewing GLMs VII: maximum-likelihood model fitting

$R T_{i}=\alpha+\beta X_{i}+\overbrace{\epsilon_{i}}^{\sim N(0, \sigma)}$

- Here's a translation of our simple model into R :

$$
R T \sim 1+x
$$

- The noise is implicit in asking R to fit a linear model

Reviewing GLMs VII: maximum-likelihood model fitting

$R T_{i}=\alpha+\beta X_{i}+\overbrace{\epsilon_{i}}^{\sim N(0, \sigma)}$

- Here's a translation of our simple model into R:

$$
R T \sim 1+x
$$

- The noise is implicit in asking R to fit a linear model
- (We can omit the $1 ; \mathrm{R}$ assumes it unless otherwise directed)

Reviewing GLMs VII: maximum-likelihood model fitting

$R T_{i}=\alpha+\beta X_{i}+\overbrace{\epsilon_{i}}^{\sim N(0, \sigma)}$

- Here's a translation of our simple model into R :

$$
R T \sim \quad x
$$

- The noise is implicit in asking R to fit a linear model
- (We can omit the $1 ; \mathrm{R}$ assumes it unless otherwise directed)

Reviewing GLMs VII: maximum-likelihood model fitting

$$
R T_{i}=\alpha+\beta X_{i}+\xlongequal[\epsilon_{i}]{\sim N(0,0)}
$$

- Here's a translation of our simple model into R :

$$
R T \sim \quad x
$$

- The noise is implicit in asking R to fit a linear model
- (We can omit the $1 ; \mathrm{R}$ assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2008)

```
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary(m) Gaussian noise, implicit intercept
[...]
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 382.997 26.837 14.271 <2e-16 ***
neighbors 4.828 6.553 0.737 0.466
> sqrt(summary(m)[["dispersion"]])
[1] 107.2248
```


Reviewing GLMs VII: maximum-likelihood model fitting

$$
R T_{i}=\alpha+\beta X_{i}+\xlongequal[\epsilon_{i}]{\sim N(0,0)}
$$

- Here's a translation of our simple model into R:

$$
R T \sim \quad x
$$

- The noise is implicit in asking R to fit a linear model
- (We can omit the $1 ; \mathrm{R}$ assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2008)
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary (m)
[...]
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $382.997 \quad 26.83714 .271<2 e-16$ ***
$\begin{array}{lllll}\text { neighbors } & 4.828 & 6.553 & 0.737 & 0.466\end{array}$
> sqrt(summary(m)[["dispersion"]])
[1] 107.2248

Reviewing GLMs VII: maximum-likelihood model fitting

$$
R T_{i}=\alpha+\beta X_{i}+\xlongequal[\epsilon_{i}]{\sim N(0,0)}
$$

- Here's a translation of our simple model into R :

$$
R T \sim \quad x
$$

- The noise is implicit in asking R to fit a linear model
- (We can omit the $1 ; \mathrm{R}$ assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2008)
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary (m)
[...]

> sqrt(summary(m) [["dispersion"]])
[1] 107.2248

Reviewing GLMs VII: maximum-likelihood model fitting

$$
R T_{i}=\alpha+\beta X_{i}+\xlongequal[\epsilon_{i}]{\sim N(0,0)}
$$

- Here's a translation of our simple model into R :

$$
R T \sim \quad x
$$

- The noise is implicit in asking R to fit a linear model
- (We can omit the $1 ; \mathrm{R}$ assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2008)
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary (m)
[...]

> sqrt(summary(m)[["dispersion"]])
[1] 107.2248

Reviewing GLMs VII: maximum-likelihood model fitting

$$
R T_{i}=\alpha+\beta X_{i}+\underset{\epsilon_{i}}{\sim N(0,0)}
$$

- Here's a translation of our simple model into R :

$$
R T \sim \quad x
$$

- The noise is implicit in asking R to fit a linear model
- (We can omit the $1 ; \mathrm{R}$ assumes it unless otherwise directed)
- Example of fitting via maximum likelihood: one subject from Bicknell et al. (2008)
> m <- glm(RT ~ neighbors, d, family="gaussian")
> summary (m)
[...]

| $\widehat{\alpha}$ | Estimat | Std. Error | t value | \|t|) | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 382.997 | 26.837 | 14.271 | <2e-16 | |
| neighbors | 4.828 | 6.553 | 0.737 | 0.466 | |

> sqrt(summary(m) [["dispersion"]])
[1] 107.2248

Reviewing GLMs: maximum-likelihood fitting VIII

```
Intercept 383.00
neighbors 4.83
\widehat{\sigma}
107.22
```


Reviewing GLMs: maximum-likelihood fitting VIII

```
Intercept 383.00
neighbors 4.83
\ 
```

- Estimated coefficients are what underlies "best linear fit" plots

Reviewing GLMs: maximum-likelihood fitting VIII

Intercept 383.00 neighbors 4.83 $\begin{array}{ll}\widehat{\sigma} & 107.22\end{array}$

- Estimated coefficients are what underlies "best linear fit" plots

Reviewing GLMs IX: Bayesian model fitting

- Alternative to
maximum-likelihood:
Bayesian model fitting

Reviewing GLMs IX: Bayesian model fitting

$P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\overbrace{\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}{\text { Likelihood }} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Prior }}}^{P(Y)}$

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of (α, β, σ) equally probable

Reviewing GLMs IX: Bayesian model fitting

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\overbrace{\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}{\text { Likelihood }} \overbrace{P(Y)}^{\text {Prior }} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {P }}}
$$

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of (α, β, σ) equally probable

- Multiply by likelihood \rightarrow posterior probability distribution over (α, β, σ)

Reviewing GLMs IX: Bayesian model fitting

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\overbrace{\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}{P(Y)}}^{\text {Likelihood }} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Prior }}
$$

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of (α, β, σ) equally probable

- Multiply by likelihood \rightarrow posterior probability distribution over (α, β, σ)

Reviewing GLMs IX: Bayesian model fitting

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\overbrace{\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}{P(Y)}}^{\text {Likelihood }} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Prior }}
$$

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of (α, β, σ) equally probable

- Multiply by likelihood \rightarrow posterior probability distribution over (α, β, σ)
- Bound the region of highest posterior probability containing 95\% of probability density \rightarrow HPD confidence region

Reviewing GLMs IX: Bayesian model fitting

$$
P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\overbrace{\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}{\text { Likelihood }} \overbrace{P(Y)}^{\text {Prior }}}^{P_{\left(\left\{\beta_{i}\right\}, \sigma\right)}}
$$

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of (α, β, σ) equally probable

- Multiply by likelihood \rightarrow posterior probability distribution over (α, β, σ)

- Bound the region of highest posterior probability containing 95\% of probability density \rightarrow HPD confidence region

Reviewing GLMs IX: Bayesian model fitting

$P\left(\left\{\beta_{i}\right\}, \sigma \mid Y\right)=\frac{\overbrace{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma\right)}^{\text {Likelihood }} \stackrel{\text { Pr }}{P\left(\left\{\left(\left\{\beta_{i}\right\}, \sigma\right)\right.\right.}}{\text { Prior }}$

- Alternative to maximum-likelihood: Bayesian model fitting
- Simple (uniform, non-informative) prior: all combinations of (α, β, σ) equally probable

$$
\mathrm{P}(\beta \mid Y)
$$

- Multiply by likelihood \rightarrow posterior probability distribution over (α, β, σ)
- Bound the region of highest posterior probability containing 95\% of probability density \rightarrow HPD confidence region
- $p_{M C M C}$ (Baayen et al., 2008) is 1 minus the largest possible symmetric confidence interval wholly on one side of 0

Multi-level Models

- But of course experiments don't have just one participant
- Different participants may have different idiosyncratic behavior
- And items may have idiosyncratic properties too
- We'd like to take these into account, and perhaps investigate them directly too.
- This is what multi-level (hierarchical, mixed-effects) models are for!

Multi-level Models II

- Recap of the graphical picture of a single-level model:

Multi-level Models III: the new graphical picture

Multi-level Models IV

An example of a multi-level model:

- Back to your lexical-decision experiment

tpozt	Word or non-word?
houze	Word or non-word?

- Non-words with different neighborhood densities should have different average decision time

Multi-level Models IV

An example of a multi-level model:

- Back to your lexical-decision experiment

tpozt	Word or non-word?
houze	Word or non-word?

- Non-words with different neighborhood densities should have different average decision time
- Additionally, different participants in your study may also have:
- different overall decision speeds
- differing sensitivity to neighborhood density

Multi-level Models IV

An example of a multi-level model:

- Back to your lexical-decision experiment

tpozt	Word or non-word?
houze	Word or non-word?

- Non-words with different neighborhood densities should have different average decision time
- Additionally, different participants in your study may also have:
- different overall decision speeds
- differing sensitivity to neighborhood density
- You want to draw inferences about all these things at the same time

Multi-level Models V: Model construction

- Once again we'll assume for simplicity that the number of word neighbors x has a linear effect on mean reading time, and that trial-level noise is normally distributed*

Multi-level Models V: Model construction

- Once again we'll assume for simplicity that the number of word neighbors x has a linear effect on mean reading time, and that trial-level noise is normally distributed*
- Random effects, starting simple: let each participant i have idiosyncratic differences in reading speed

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{i}}^{\sim N\left(0, \sigma_{b}\right)}+\overbrace{\epsilon_{i j}}^{\text {Noise } N\left(0, \sigma_{\epsilon}\right)}
$$

Multi-level Models V: Model construction

- Once again we'll assume for simplicity that the number of word neighbors x has a linear effect on mean reading time, and that trial-level noise is normally distributed*
- Random effects, starting simple: let each participant i have idiosyncratic differences in reading speed

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{i}}^{\sim N\left(0, \sigma_{b}\right)}+\overbrace{\epsilon_{i j}}^{\text {Noise } N\left(0, \sigma_{\epsilon}\right)}
$$

- In R, we'd write this relationship as

$$
\text { RT } \sim 1+x+(1 \mid \text { participant })
$$

Multi-level Models V: Model construction

- Once again we'll assume for simplicity that the number of word neighbors x has a linear effect on mean reading time, and that trial-level noise is normally distributed*
- Random effects, starting simple: let each participant i have idiosyncratic differences in reading speed

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{i}}^{\sim N\left(0, \sigma_{b}\right)}+\overbrace{\epsilon_{i j}}^{\text {Noise } N\left(0, \sigma_{\epsilon}\right)}
$$

- In R, we'd write this relationship as

```
RT ~ 1 + x + (1 | participant)
```

- Once again we can leave off the 1 , and the noise term $\epsilon_{i j}$ is implicit

Multi-level Models V: Model construction

- Once again we'll assume for simplicity that the number of word neighbors x has a linear effect on mean reading time, and that trial-level noise is normally distributed*
- Random effects, starting simple: let each participant i have idiosyncratic differences in reading speed

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{i}}^{\sim N\left(0, \sigma_{b}\right)}+\overbrace{\epsilon_{i j}}^{\text {Noise } N\left(0, \sigma_{\epsilon}\right)}
$$

- In R, we'd write this relationship as

```
RT ~ x + (1 | participant)
```

- Once again we can leave off the 1 , and the noise term $\epsilon_{i j}$ is implicit

Multi-level Models VI: simulating data

- One beauty of multi-level models is that you can simulate trial-level data
- This is invaluable for achieving deeper understanding of both your analysis and your data

Multi-level Models VI: simulating data

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{i}}+\overbrace{\epsilon_{i j}}
$$

- One beauty of multi-level models is that you can simulate trial-level data
- This is invaluable for achieving deeper understanding of both your analysis and your data

```
## simulate some data
```

> sigma.b <- 125 \# inter-subject variation larger than
> sigma.e <- 40 \# intra-subject, inter-trial variation
> alpha <- 500
> beta <- 12
> $M<-6$ \# number of participants
$>n<-50 \quad$ \# trials per participant
> b <- rnorm(M, O, sigma.b) \# individual differences
> nneighbors <- rpois $(M * n, 3)+1$ \# generate num. neighbors
> subj <- rep(1:M,n)
> RT <- alpha + beta * nneighbors + \# simulate RTs!
$b[$ subj $]+\operatorname{rnorm}(M * n, 0$, sigma.e $)$

Multi-level Models VII: simulating data

- Participant-level clustering is easily visible

Multi-level Models VII: simulating data

- Participant-level clustering is easily visible

Multi-level Models VII: simulating data

- Participant-level clustering is easily visible
- This reflects the fact that inter-participant variation (125ms) is larger than inter-trial variation (40 ms)

Multi-level Models VII: simulating data

- Participant-level clustering is easily visible
- This reflects the fact that inter-participant variation (125ms) is larger than inter-trial variation (40 ms)
- And the effects of neighborhood density are also visible

Statistical inference with multi-level models

- Thus far, we've just defined a model and used it to generate data

Statistical inference with multi-level models

- Thus far, we've just defined a model and used it to generate data
- We linguists are usually in the opposite situation...

Statistical inference with multi-level models

\square

- Thus far, we've just defined a model and used it to generate data
- We linguists are usually in the opposite situation...
- We have data and we need to infer a model
- Specifically, the "fixed-effect" parameters α, β, and σ_{ϵ}, plus the parameter governing inter-subject variation, σ_{b}
- e.g., hypothesis tests about effects of neighborhood density: can we reliably infer that β is $\{$ non-zero, positive, $\ldots\}$?

Statistical inference with multi-level models

$R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{i}}^{\sim N\left(0, \sigma_{b}\right)}+\overbrace{\epsilon_{i j}}^{\left.\text {Noise~N(0, } \sigma_{\epsilon}\right)}$

- Thus far, we've just defined a model and used it to generate data
- We linguists are usually in the opposite situation...
- We have data and we need to infer a model
- Specifically, the "fixed-effect" parameters α, β, and σ_{ϵ}, plus the parameter governing inter-subject variation, σ_{b}
- e.g., hypothesis tests about effects of neighborhood density: can we reliably infer that β is $\{$ non-zero, positive, $\ldots\}$?
- Fortunately, we can use the same principles as before to do this:
- The principle of maximum likelihood
- Or Bayesian inference

Fitting a multi-level model using maximum likelihood

```
RTij=\alpha+\beta\mp@subsup{x}{ij}{}+
> m <- lmer(time ~ neighbors.centered +
    (1 | participant),dat,REML=F)
> print(m,corr=F)
[...]
```

Random effects:

Groups	Name	Variance	Std.Dev.
participant (Intercept)	4924.9	70.177	
Residual		19240.5	138.710

Number of obs: 1760, groups: participant, 44

Fixed effects:

(Intercept)	583.787	11.082	52.68
neighbors.centered	8.986	1.278	7.03

Fitting a multi-level model using maximum likelihood

```
RTij=\alpha+\beta\mp@subsup{x}{ij}{}+\mp@subsup{\overbrace}{\mp@subsup{b}{i}{\prime}}{~N(0,\mp@subsup{\sigma}{b}{})}+\mp@subsup{\overbrace}{\mp@subsup{\epsilon}{ij}{\prime}}{Nose~N(0,\mp@subsup{\sigma}{i}{})}
> m <- lmer(time ~ neighbors.centered +
    (1 | participant),dat,REML=F)
> print(m,corr=F)
[...]
```

Random effects:

Groups	Name	Variance	Std.Dev.
participant (Intercept)	4924.9	70.177	
Residual		19240.5	138.710

Number of obs: 1760, groups: participant, 44
Fixed effects:

	Estimate Std. Error t value		
(Intercept)	583.787	11.082	52.68
neighbors.centered	8.986	1.278	7.03

Fitting a multi-level model using maximum likelihood


```
> m <- lmer(time ~ neighbors.centered +
    (1 | participant),dat,REML=F)
> print(m,corr=F)
[...]
```

Random effects:

Groups	Name	Variance	Std.Dev.
participant (Intercept)	4924.9	70.177	
Residual		19240.5	138.710

Number of obs: 1760, groups: participant, 44

Fixed effects:

Fitting a multi-level model using maximum likelihood

```
RTij=\alpha+\beta\mp@subsup{x}{ij}{}+
> m <- lmer(time ~ neighbors.centered +
    (1 | participant),dat,REML=F)
> print(m,corr=F)
[...]
```

Random effects:

Groups	Name	Variance	Std.Dev.
participant	(Intercept)	4924.9	70.177
Residual		19240.5	138.710

Number of obs: 1760, groups: participant, 44

Fixed effects:

Fitting a multi-level model using maximum likelihood

```
RTij=\alpha+\beta\mp@subsup{x}{ij}{}+
> m <- lmer(time ~ neighbors.centered +
    (1 | participant),dat,REML=F)
> print(m,corr=F)
[...]
```

Random effects:

Groups	Name	Variance Std.Dev.	
participant (Intercept)	4924.9	70.177	
Residual		19240.5	138.710
Number of obs: 1760, groups: participant, 44			

Fixed effects:

Interpreting parameter estimates

Intercept	583.79
neighbors.centered	8.99
$\widehat{\sigma}_{b}$	70.18
$\widehat{\sigma}_{\epsilon}$	138.7

Interpreting parameter estimates

Intercept	583.79
neighbors.centered	8.99
$\widehat{\sigma}_{b}$	70.18
$\widehat{\sigma}_{\epsilon}$	138.7

- The fixed effects are interpreted just as in a traditional single-level model:

Interpreting parameter estimates

Intercept	583.79
neighbors.centered	8.99
$\widehat{\sigma}_{b}$	70.18
$\widehat{\sigma}_{\epsilon}$	138.7

- The fixed effects are interpreted just as in a traditional single-level model:
- The 'base' RT for a non-word in this study is 583.79 ms

Interpreting parameter estimates

Intercept	583.79
neighbors.centered	8.99
$\widehat{\sigma}_{b}$	70.18
$\widehat{\sigma}_{\epsilon}$	138.7

- The fixed effects are interpreted just as in a traditional single-level model:
- The 'base' RT for a non-word in this study is 583.79 ms
- Every extra neighbor increases 'base' RT by 8.99 ms

Interpreting parameter estimates

Intercept	583.79
neighbors.centered	8.99
$\widehat{\sigma}_{b}$	70.18
$\widehat{\sigma}_{\epsilon}$	138.7

- The fixed effects are interpreted just as in a traditional single-level model:
- The 'base' RT for a non-word in this study is 583.79 ms
- Every extra neighbor increases 'base' RT by 8.99 ms
- Inter-trial variability σ_{ϵ} also has the same interpretation

Interpreting parameter estimates

Intercept	583.79
neighbors.centered	8.99
$\widehat{\sigma}_{b}$	70.18
$\widehat{\sigma}_{\epsilon}$	138.7

- The fixed effects are interpreted just as in a traditional single-level model:
- The 'base' RT for a non-word in this study is 583.79 ms
- Every extra neighbor increases 'base' RT by 8.99 ms
- Inter-trial variability σ_{ϵ} also has the same interpretation
- Inter-trial variability for a given participant is Gaussian, centered around the participant+word-specific mean with standard deviation 138.7 ms

Interpreting parameter estimates

Intercept	583.79
neighbors.centered	8.99
$\widehat{\sigma}_{b}$	70.18
$\widehat{\sigma}_{\epsilon}$	138.7

- The fixed effects are interpreted just as in a traditional single-level model:
- The 'base' RT for a non-word in this study is 583.79 ms
- Every extra neighbor increases 'base' RT by 8.99 ms
- Inter-trial variability σ_{ϵ} also has the same interpretation
- Inter-trial variability for a given participant is Gaussian, centered around the participant+word-specific mean with standard deviation 138.7 ms
- Inter-participant variability σ_{b} is what's new:

Interpreting parameter estimates

Intercept	583.79
neighbors.centered	8.99
$\widehat{\sigma}_{b}$	70.18
$\widehat{\sigma}_{\epsilon}$	138.7

- The fixed effects are interpreted just as in a traditional single-level model:
- The 'base' RT for a non-word in this study is 583.79 ms
- Every extra neighbor increases 'base' RT by 8.99 ms
- Inter-trial variability σ_{ϵ} also has the same interpretation
- Inter-trial variability for a given participant is Gaussian, centered around the participant+word-specific mean with standard deviation 138.7 ms
- Inter-participant variability σ_{b} is what's new:
- Variability in average RT in the population from which the participants were drawn has standard deviation 70.18 ms

Inferences about cluster-level parameters

- What about the participants' idiosyncracies themselves-the b_{i} ?

Inferences about cluster-level parameters

- What about the participants' idiosyncracies themselves-the b_{i} ?
- We can also draw inferences about these-you may have heard about BLUPs

Inferences about cluster-level parameters

- What about the participants' idiosyncracies themselves-the b_{i} ?
- We can also draw inferences about these-you may have heard about BLUPs
- To understand these: committing to fixed-effect and random-effect parameter estimates determines a conditional probability distribution on participant-specific effects:

$$
P\left(b_{i} \mid \widehat{\alpha}, \widehat{\beta}, \widehat{\sigma}_{b}, \widehat{\sigma}_{\epsilon}\right)
$$

Inferences about cluster-level parameters

- What about the participants' idiosyncracies themselves-the b_{i} ?
- We can also draw inferences about these-you may have heard about BLUPs
- To understand these: committing to fixed-effect and random-effect parameter estimates determines a conditional probability distribution on participant-specific effects:

$$
P\left(b_{i} \mid \widehat{\alpha}, \widehat{\beta}, \widehat{\sigma}_{b}, \widehat{\sigma}_{\epsilon}\right)
$$

- The BLUPS are the conditional modes of b_{i}-the choices that maximize the above probability

Inferences about cluster-level parameters II

- The BLUP participant-specific 'base' RTs for this dataset are black lines on the base of this graph

- The solid line is a guess at their distribution

Inferences about cluster-level parameters II

- The BLUP participant-specific 'base' RTs for this dataset are black lines on the base of this graph

- The solid line is a guess at their distribution
- The dotted line is the distribution predicted by the model for the population from which the participants are drawn

Inferences about cluster-level parameters II

- The BLUP participant-specific 'base' RTs for this dataset are black lines on the base of this graph

- The solid line is a guess at their distribution
- The dotted line is the distribution predicted by the model for the population from which the participants are drawn
- Reasonably close correspondence

Inference about cluster-level parameters III

- Participants may also have idiosyncratic sensitivities to neighborhood density

Inference about cluster-level parameters III

- Participants may also have idiosyncratic sensitivities to neighborhood density
- Incorporate by adding cluster-level slopes into the model:

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{1 i}+b_{2 i}}^{\sim N\left(0, \Sigma_{b}\right)} x_{i j}+\overbrace{\epsilon_{i j}}^{\text {Noise } \sim N\left(0, \sigma_{\epsilon}\right)}
$$

Inference about cluster-level parameters III

- Participants may also have idiosyncratic sensitivities to neighborhood density
- Incorporate by adding cluster-level slopes into the model:

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{1 i}+b_{2 i}}^{\sim N\left(0, \Sigma_{b}\right)} x_{i j}+\overbrace{\epsilon_{i j}}^{\text {Noise } \sim N\left(0, \sigma_{\epsilon}\right)}
$$

- In R (once again we can omit the 1's):

$$
\text { RT } \sim 1+\mathrm{x}+(1+\mathrm{x} \mid \text { participant })
$$

Inference about cluster-level parameters III

- Participants may also have idiosyncratic sensitivities to neighborhood density
- Incorporate by adding cluster-level slopes into the model:

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{1 i}+b_{2 i}}^{\sim N\left(0, \Sigma_{b}\right)} x_{i j}+\overbrace{\epsilon_{i j}}^{\text {Noise } \sim N\left(0, \sigma_{\epsilon}\right)}
$$

- In R (once again we can omit the 1 's):

$$
\text { RT } \sim 1+x+(1+x \mid \text { participant })
$$

> lmer ($R T$ ~ neighbors.centered + (neighbors.centered | participant), dat, REML=F)
[...]
Random effects:

Groups	Name	Variance	Std.Dev. Corr	
participant	(Intercept)	4928.625	70.2042	
	neighbors.centered	19.421	4.4069	-0.307
Residual		19107.143	138.2286	

Inference about cluster-level parameters III

- Participants may also have idiosyncratic sensitivities to neighborhood density
- Incorporate by adding cluster-level slopes into the model:

$$
R T_{i j}=\alpha+\beta x_{i j}+\overbrace{b_{1 i}+b_{2 i}}^{\sim N\left(0, \Sigma_{b}\right)} x_{i j}+\overbrace{\epsilon_{i j}}^{\text {Noise } \sim N\left(0, \sigma_{\epsilon}\right)}
$$

- In R (once again we can omit the 1 's):

$$
\text { RT } \sim 1+x+(1+x \mid \text { participant })
$$

> lmer ($R T$ ~ neighbors.centered + (neighbors.centered | participant), dat,REML=F)
[...]
Random effects:
Groups Name
participant (Intercept)
neighbors.centered
Residual
These three numbers jointly characterize $\widehat{\Sigma}_{b}$

Variance	Std.Dev. Corr
4928.625	70.2042
19.421	4.4069
	-0.307

19107.143138 .2286

Inference about cluster-level parameters IV

- Correlation visible in participant-specific BLUPs

Inference about cluster-level parameters IV

- Correlation visible in participant-specific BLUPs
- Participants who were faster overall also tend to be more affected by neighborhood density

$$
\widehat{\Sigma}=\left(\begin{array}{cc}
70.20 & -0.3097 \\
-0.3097 & 4.41
\end{array}\right)
$$

Bayesian inference for multilevel models

$P\left(\left\{\beta_{i}\right\}, \sigma_{b}, \sigma_{\epsilon} \mid Y\right)=\frac{\overbrace{\frac{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma_{b}, \sigma_{\epsilon}\right)}{\text { Likelihood }}}^{P(Y)} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma_{b}, \sigma_{\epsilon}\right)}^{\text {Prior }}}{}$

- We can also use Bayes'
rule to draw inferences
about fixed effects

Bayesian inference for multilevel models

$P\left(\left\{\beta_{i}\right\}, \sigma_{b}, \sigma_{\epsilon} \mid Y\right)=\frac{\overbrace{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma_{b}, \sigma_{\epsilon}\right)}^{\text {Likelihood }} \overbrace{P\left(\left\{\beta_{i}\right\},\right.}^{P(Y)} \overbrace{\left.\sigma_{b}, \sigma_{\epsilon}\right)}^{\text {Prior }}}{P}$

- We can also use Bayes' rule to draw inferences about fixed effects
- Computationally more challenging than with single-level regression; Markov-chain Monte Carlo (MCMC) sampling techniques allow us to approximate it

Bayesian inference for multilevel models

$$
P\left(\left\{\beta_{i}\right\}, \sigma_{b}, \sigma_{\epsilon} \mid Y\right)=\frac{\overbrace{P\left(Y \mid\left\{\beta_{i}\right\}, \sigma_{b}, \sigma_{\epsilon}\right)}^{\text {Likelihood }} \overbrace{P\left(\left\{\beta_{i}\right\}, \sigma_{b}, \sigma_{\epsilon}\right)}^{P(Y)}}{\text { Prior }}
$$

- We can also use Bayes' rule to draw inferences about fixed effects
- Computationally more challenging than with single-level regression; Markov-chain Monte Carlo (MCMC) sampling techniques allow us to approximate it

α

Why do you care???

- You may be asking yourself:

Why did I come to this workshop? I could do everything you just did with an ANCOVA, treating participant as a random factor, or by looking at participant means.

Why do you care??? II

> Why did I come to this workshop? I could do everything you just did with an ANCOVA, treating participant as a random factor, or by looking at participant means.

Why do you care??? II

```
Why did I come to this workshop? I could do every-
thing you just did with an ANCOVA, treating partici-
pant as a random factor, or by looking at participant
means.
```

- Yes, but there are several respects in which multi-level models go beyond $\mathrm{AN}(\mathrm{C}) \mathrm{OVA}$:

Why do you care??? II

```
Why did I come to this workshop? I could do every-
thing you just did with an ANCOVA, treating partici-
pant as a random factor, or by looking at participant
means.
```

- Yes, but there are several respects in which multi-level models go beyond AN(C)OVA:

1. They handle imbalanced datasets just as well as balanced datasets

Why do you care??? II

```
Why did I come to this workshop? I could do every-
thing you just did with an ANCOVA, treating partici-
pant as a random factor, or by looking at participant
means.
```

- Yes, but there are several respects in which multi-level models go beyond AN(C)OVA:

1. They handle imbalanced datasets just as well as balanced datasets
2. You can use non-linear linking functions (e.g., logit models for binary-choice data)

Why do you care??? II

```
Why did I come to this workshop? I could do every-
thing you just did with an ANCOVA, treating partici-
pant as a random factor, or by looking at participant
means.
```

- Yes, but there are several respects in which multi-level models go beyond AN(C)OVA:

1. They handle imbalanced datasets just as well as balanced datasets
2. You can use non-linear linking functions (e.g., logit models for binary-choice data)
3. You can cross cluster-level effects

- Every trial belongs to both a participant cluster and an item cluster

Why do you care??? II

```
Why did I come to this workshop? I could do every-
thing you just did with an ANCOVA, treating partici-
pant as a random factor, or by looking at participant
means.
```

- Yes, but there are several respects in which multi-level models go beyond AN(C)OVA:

1. They handle imbalanced datasets just as well as balanced datasets
2. You can use non-linear linking functions (e.g., logit models for binary-choice data)
3. You can cross cluster-level effects

- Every trial belongs to both a participant cluster and an item cluster
- You can build a single unified model for inferences from your data

Why do you care??? II

```
Why did I come to this workshop? I could do every-
thing you just did with an ANCOVA, treating partici-
pant as a random factor, or by looking at participant
means.
```

- Yes, but there are several respects in which multi-level models go beyond AN(C)OVA:

1. They handle imbalanced datasets just as well as balanced datasets
2. You can use non-linear linking functions (e.g., logit models for binary-choice data)
3. You can cross cluster-level effects

- Every trial belongs to both a participant cluster and an item cluster
- You can build a single unified model for inferences from your data
- ANOVA requires separate by-participants and by-items analyses (quasi- F^{\prime} is quite conservative)

Why do you care??? II

```
Why did I come to this workshop? I could do every-
thing you just did with an ANCOVA, treating partici-
pant as a random factor, or by looking at participant
means.
```

- Yes, but there are several respects in which multi-level models go beyond AN(C)OVA:

1. They handle imbalanced datasets just as well as balanced datasets
2. You can use non-linear linking functions (e.g., logit models for binary-choice data)
3. You can cross cluster-level effects

- Every trial belongs to both a participant cluster and an item cluster
- You can build a single unified model for inferences from your data
- ANOVA requires separate by-participants and by-items analyses (quasi- F^{\prime} is quite conservative)

Summary

- Multi-level models may seem strange and foreign
- But all you really need to understand them is three basic things
- Generalized linear models
- The principle of maximum likelihood
- Bayesian inference
- As you will see in the rest of the workshop, these models open up many new interesting doors!

References I

Agresti, A. (2002). Categorical Data Analysis. Wiley, second edition.
Baayen, R. H., Davidson, D. J., and Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language. In press.
Bicknell, K., Elman, J. L., Hare, M., McRae, K., and Kutas, M. (2008). Online expectations for verbal arguments conditional on event knowledge. In Proceedings of the 30th Annual Conference of the Cognitive Science Society, pages 2220-2225.
Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language. In press.

